The Reaction of 1-Aryl- and 1-Pyridyl-1,2,3,4-tetrahydroisoquinolin-3-ones with Dimethylcarbamoyl Chloride: The Preparation of Amidines, Isoquinolines and \boldsymbol{N}-Carbamoylated Products

David J. Hunter, Roger E. Markwell, Stephen A. Smith* and Paul A. Wyman Department of Medicinal Chemistry, SmithKline Beecham Pharmaceuticals, Coldharbour Road, The Pinnacles, Harlow, Essex CM19 5AD, UK

Abstract

1-(Halogenophenyl)-1,2,3,4-tetrahydroisoquinolin-3-ones, such as 3 , react with neat dimethylcarbamoyl chloride at $95-165^{\circ} \mathrm{C}$ to give high yields of the corresponding $N . N$-dimethylamidines: higher temperatures favoured N-carbamoylation. At $155^{\circ} \mathrm{C}$ the related 1 -(3-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-ones 6-8, 10 and 11 gave lower yields of amidine, with those lactams not bearing an electron-releasing substituent on the benzo ring (6-8) giving medium to good yields of 1-(3-pyridyl) isoquinolines. In contrast, treatment of the corresponding 1-(4-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-one 12 with neat dimethylcarbamoyl chloride at temperatures between $125^{\circ} \mathrm{C}$ and reflux gave none of the corresponding amidine. At high temperature the N carbamoylated product 30 predominated, whereas at $125^{\circ} \mathrm{C}, 3$-(N, N-dimethylcarbamoyloxy)-1-(4pyridyl) isoquinoline 37 was the major product.

As part of a programme involving the design of new antiarthritic drugs, ${ }^{1}$ we wished to convert the lactams 1 into the corresponding dimethylamidines 2 . Several groups have shown dimethylcarbamoyl chloride (either neat ${ }^{2.3}$ or diluted with toluene ${ }^{4}$) to effect similar transformations in reasonable to good yields, in 'one pot'. We now report the results of our investigations using this reagent.

1

2

Results and Discussion

The initial substrate for these studies, 1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-3-one 3 , was prepared from phenylacetonitrile and 4-chlorobenzaldehyde in polyphosphoric acid ${ }^{5.6}$ The products from the treatment of this lactam with neat dimethylcarbamoyl chloride at various temperatures, or with 1 equiv. of dimethylcarbamoyl chloride in toluene at reflux, were the amidine 13 and the N-substituted structure 22.

The variation in both product yield and composition on altering the reaction conditions is shown in Table 1. It is clear that the conditions (dimethylcarbamoyl chloride/toluene) reported ${ }^{4}$ to give high yields of a wide range of acyclic amidines from the corresponding secondary amides, proved to be of less value in this instance than did the neat reagent when used at temperatures in the range $95-165^{\circ} \mathrm{C}$. Furthermore, at even higher temperatures the N-substituted product predominates (to an extent that may indicate a synthetically useful method for the preparation of N-carbamoylated amides such as 22). None of the previous publications covering this reaction describe the formation of an N-carbamoylated product, although secondary N-carbamoylation has been reported from the treatment of a number of related lactams with isocyanates. ${ }^{7}$

We are not aware of a published mechanism for this type of transformation and propose the following scheme to explain our results (Scheme 1). The kinetic product, by analogy with the acylation of amides, ${ }^{8}$ is 38 . At lower temperatures, loss of

Table 1 The effect of temperature on the reaction of compound $\mathbf{3}$ with dimethylcarbamoyl chloride

			Product yield (\%)	
Dimethylcarbamoyl chloride	Oil bath $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$\mathbf{1 3}^{a}$	$\mathbf{2 2}^{\boldsymbol{a}}$
Mixture with toluene	Reflux temp.	6	32	26
Neat	95	52	63^{b}	c
Neat	125	18	80	c
Neat	165	3	59	8
Neat	195	2	6	54

${ }^{a}$ Both 13 and 22 were recovered unchanged on treatment with dimethylcarbamoyl chloride at reflux temperature. ${ }^{b} 4-5 \%$ Of starting material remaining, all other cases were allowed to proceed to complete consumption of $3{ }^{c}{ }^{c}$ Not detected.

Scheme 1 Reagents: i, $\mathrm{Me}_{2} \mathrm{NCOCl}$
carbon dioxide occurs to give 13 whereas towards the reflux temperature, O to N rearrangement is faster than the decarboxylative process.

As a result of the data generated in Table 1 we chose to perform subsequent reactions in neat dimethylcarbamoyl chloride at $155^{\circ} \mathrm{C}$. This temperature was chosen as a compromise between maximum yield and the convenience of a

R^{1}	R^{2}
H	H
H	H
$6-\mathrm{F}$	H
$6-\mathrm{F}$	H
$5-\mathrm{Cl}$	H
H	H
$8-\mathrm{OMe}$	$5-\mathrm{Br}$
$8-\mathrm{OMe}$	H
$5,6-\mathrm{Benzo}$	
H	H

Ar
Ar
4-Chlorophenyl
2-Fluorophenyl
2-Fluorophenyl
3-Pyridyl
3-Pyridyl
3-Pyridyl
3-Pyridyl
3-Pyridyl
3-Pyridyl
4-Pyridyl

$\mathbf{1 3}^{a}$	22
14^{a}	23
$\mathbf{1 5}^{a}$	24
$\mathbf{1 6}^{b}$	25
$\mathbf{1 7}^{b}$	26
$\mathbf{1 8}^{b}$	27
19^{b}	28
20^{b}	29
21	30^{a}

${ }^{a}$ Isolated as the hydrochloride salt. ${ }^{b}$ Isolated as the dihydrochloride salt.

37
Table 2 The products obtained from the reaction of the lactams 4-8, 10 and 11 with dimethylcarbamoyl chloride

Lactam	Amidine	Yield (\%)	N-Substituted product	Yield (\%)	Isoquinoline	Yield (\%)
4	14	65	23	9		
5	15	66	24	14		
6	16	8	25	a	31	57
7	17	11	26	a	32	57
8	18	14	27	a	33	26
10	19	$3^{\text {b }}$	28	30	34	11
11	20	27	29	30	35	a

${ }^{a}$ None of this product observed. ${ }^{b}$ Amidine unstable-isolated as an air- and heat-sensitive foam.
short reaction time. Under these conditions, two further lactams 4 and 5, prepared in an analogous fashion to 3, gave good yields of amidine (Table 2) adding further credence to the generality of our initial results.

In addition to the amidines 13-15, the preparation of related pyridyl analogues such as 16 was of particular interest. The required intermediate lactams ($6-9$ and 11) were prepared from the correspondingly substituted phenylacetonitrile or phenylacetamide derivatives and pyridine-3-carbaldehyde in polyphosphoric acid under the conditions previously described for 8. ${ }^{9}$ The bromo lactam 9 was converted into 10 by catalytic hydrogenation over palladium in the presence of sodium acetate. Reaction of lactams 6-8 and 10,11 with dimethylcarbamoyl chloride gave up to three different products (Table 2).

The most surprising result from these experiments was that all the pyridyl lactams, with the exception of 11, gave a quantity of the corresponding aromatised isoquinoline. This type of product was not detected in the 1-(halogenophenyl) substituted series; the absence of an electron-rich benzo ring in the isoquinolone nucleus appears to predispose this system to isoquinoline formation.

We found that both 18 and 28 were recovered unchanged when treated with dimethylcarbamoyl chloride under the conditions described above and, therefore, propose the following mechanism for the formation of the isoquinoline derivatives (Scheme 2).

For those lactams lacking an electron-rich benzo ring (6-8)
equilibration to, and elimination from, $\mathbf{4 0}$ occurs more rapidly than the rearrangement of 39 to the corresponding amidine or N-substituted product. It is likely that the different product ratios described in Table 2 result from the enhanced acidity of the 1 - and/or 4-hydrogens in 6-8 when compared with those in 10 and, in particular, 11. Although it is not clear whether equilibration to $\mathbf{4 0}$ or elimination of dimethylcarbamic acid is the rate-limiting step in the formation of the isoquinoline nucleus, the absence of such a product from the 1(halogenophenyl) series suggests a pivotal role for the pyridyl moiety and thus for the acidity of the 1 -hydrogen. Such an acidity would, of course, be inductively enhanced by reaction of the pyridine nitrogen atom with the excess of reagent present during the reaction.

As a result of some interesting biological results found with a number of the amidines $\mathbf{1 6 - 2 0}$, we wished to prepare the parent 4-pyridyl derivative 21. However, treatment of 12^{9} with dimethylcarbamoyl chloride gave none of the desired amidine 21 or even of the isoquinoline 36. Instead, two products 30 and 37 were obtained, the ratio of which varied with reaction temperature (Table 3).

In this case, the results are somewhat analogous to those described for the halogenophenyl series, although oxidation of the presumed intermediate 41 (Scheme 3) is now more rapid than the rearrangement to the amidine 21. Also the yield of N-substituted product 30 increases with temperature, as does the ratio of $30: 37$.

The formation of varying amounts of 37 clearly contrasts

Scheme 2 Reagents: i, $\mathrm{Me}_{2} \mathrm{NCOCl}$

Scheme 3 Reagents: i, $\mathrm{Me}_{2} \mathrm{NCOCl}$
with the products obtained from the 3-pyridyl lactam 8 and suggests the possibility of a reaction pathway not available to the 3 -pyridyl derivatives. Reaction of dimethylcarbamoyl chloride with the pyridine nitrogen atom of $\mathbf{1 2}$ followed by O carbamoylation (or vice versa) would give 41. Reversible loss of a proton is well known in similar systems ${ }^{10}$ and in this case would give 42. Loss of dimethylformamide would then give 37 directly. Clearly, direct oxidation of an intermediate such as 41

Table 3 The effect of temperature on the reaction of 12 with dimethylcarbamoyl chloride

| | | Product yield (\%) | |
| :--- | :---: | :--- | :--- | :--- |
| | | | |
| Oil bath temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Time (h) | $\mathbf{3 0}$ | 37 |
| 125 | 24 | 4^{a} | 40^{a} |
| 165 | 3 | 17 | 22 |
| 195 (reflux temp.) | 2 | 36 | 23 |

${ }^{a} 15 \%$ of starting material remaining. All other cases were allowed to proceed to complete consumption of $\mathbf{1 2}$.
or $\mathbf{4 3}$ could lead to 37 . That the same products ($\mathbf{3 0}$ and $\mathbf{3 7}$) were obtained in the absence of air, whilst not ruling out such a possibility, argues against it.
The effect of temperature on the ratio of 30 to 37 (Table 3) is somewhat analogous to that described for the (1-halogenophenyl) series in Table 1 and Scheme 1. The likely effect of increasing temperature in both cases is to allow the rate of O to N rearrangement to compete more effectively with alternative pathways. The major difference is that for the compounds of Table 1 the alternative pathway is towards amidine formation, whereas for 12 it is towards the oxidised isoquinoline 37.
In conclusion, under suitably chosen conditions dimethylcarbamoyl chloride has been shown to be a useful reagent for the direct conversion of lactams such as 3 into the corresponding dimethylamidines. Under more forcing conditions (reflux temperature) it may also prove a useful reagent for the N, N-dimethylcarbamoylation of lactams. The reagent appears of less value for the conversion of 3-pyridyl lactams such as 8 into the related amidines, but may prove useful for the dehydration of lactams such as 6 and 7, bearing electronwithdrawing groups in the benzo ring, into the corresponding isoquinolines. The reaction of dimethylcarbamoyl chloride with the 4 -pyridyl lactam 12 gave rapid access to the novel 3-protected-1-(4-pyridyl)hydroxyisoquinoline 37.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra (δ_{H}) were recorded using Bruker AMX 400 (at 400 MHz), JEOL GX 270 (at 270 MHz), Bruker AC 250 (at 250 MHz) and Varian CFT 20 (at 80 MHz) spectrometers. Samples were prepared as solutions in CDCl_{3} unless otherwise detailed. Tetramethylsilane was used as internal standard. J-Values are given in Hz . Mass spectra were recorded on a JEOL DX303 instrument. Analytical TLC was performed on $100 \mu \mathrm{M}$ silica gel plates (Kodak). Merck Kieselgel 60 was used for column chromatography. M.p.s were recorded with a Reichert m.p. apparatus and are uncorrected. Organic solutions were dried over sodium sulfate. Evaporation of solvents was conducted under reduced pressure.

General Procedure for the Preparation of Lactams 3-9, 11 and 12.-The method used was similar to that previously described. ${ }^{5,9,11}$ Thus, a mixture of benzyl cyanide (2 equiv.) and polyphosphoric acid ($0.5 \mathrm{~g} \mathrm{mmol}^{-1}$ of nitrile) was heated and stirred at $80^{\circ} \mathrm{C}$ for 0.75 h . The aldehyde (1 equiv.) was added with very vigorous stirring over 0.5 h to the mixture which was then heated to $135^{\circ} \mathrm{C}$ for 3.5 h . After this it was cooled to $100^{\circ} \mathrm{C}$ and poured into water ($1 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ of polyphosphoric acid). Ammonium hydroxide ($d 0.880 ; 1.5 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ of polyphosphoric acid) was added to the mixture which was stored for 16 h and then filtered. The solid thus obtained was heated under reflux in $1.25 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous sodium hydroxide $\left(1.5 \mathrm{~cm}^{3} \mathrm{~g}^{-1}\right.$ of polyphosphoric acid) for 2 h ; the treatment with sodium hydroxide was omitted for those lactams (6-9, 11 and 12) containing a 1 -pyridyl substituent. The mixture was filtered
whilst hot, the solid washed with water, chromatographed using chloroform as eluent, and recrystallised to give lactam.

1-(2-Fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-3-one M.p. $167-170^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 74.6; H, 5.1; N, 5.7. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}$ requires C, $74.7 ; \mathrm{H}, 5.0 ; \mathrm{N}, 5.8 \%$); $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ $3.67\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 3.76\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 6.00(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, 1-\mathrm{H}), 6.33(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH})$ and $6.95-7.35(8 \mathrm{H}, \mathrm{br} \mathrm{m}, 8 \mathrm{ArH})$ (Found: $\mathrm{M}^{+}, 241.0915 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FNO}$ requires 241.0903); m / z $241\left(\mathrm{M}^{+}, 100 \%\right), 197(44), 146(89)$ and $118(46)$.
6-Fluoro-1-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-3one 5. M.p. $143-145^{\circ} \mathrm{C}$ [from EtOAc-light petroleum (b.p. 60$80^{\circ} \mathrm{C}$)] (Found: C, $69.5 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.5 . \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}$ requires C, $69.5 ; \mathrm{H}, 4.3 ; \mathrm{N}, 5.4 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $3.59\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 20,4-\mathrm{H}\right), 3.71\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 20,4-\mathrm{H}\right), 5.95(1 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H}$) and 6.8-7.35 ($7 \mathrm{H}, \mathrm{br} \mathrm{m}, 7 \mathrm{ArH}$) (Found: $\mathrm{M}^{+}, 259.0804$. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}$ requires 259.0809); $m / z 259\left(\mathrm{M}^{+}, 100 \%\right)$ and 164 (100).

6-Fluoro-1-(3-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-one 6. M.p. $184-185^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 69.4; H, 4.5; N, 11.6. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 69.4 ; \mathrm{H}, 4.6 ; \mathrm{N}, 11.6 \%\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 5.80(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.95-7.20(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{m}$, py $5-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{m}$, py $4-\mathrm{H}), 8.48(1 \mathrm{H}$, dd, $J 1,5$, py $6-\mathrm{H})$ and $8.55(1 \mathrm{H}, \mathrm{d}, J 1$, py $2-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 242\left(\mathrm{M}^{+}\right.$, 30%) and 164 (100).

5-Chloro-1-(3-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-one 7. M.p. $182-185^{\circ} \mathrm{C}$ (from EtOH) (Found: C, $64.8 ; \mathrm{H}, 4.1 ; \mathrm{N}, 10.7$. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 65.0 ; \mathrm{H}, 4.3 ; \mathrm{N}, 10.8 \%\right) ; \delta_{\mathrm{H}}(80$ $\mathrm{MHz}) 3.80(2 \mathrm{H}, \mathrm{s}, 2 \times 4-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 6.95-7.75$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{NH}, 6-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}$, py $4-\mathrm{H}$ and py $5-\mathrm{H}$), $8.70(2 \mathrm{H}$, m, py $2-\mathrm{H}$ and $6-\mathrm{H}) ; m / z 258\left(\mathrm{M}^{+}, 38 \%\right), 223$ (35), 190 (100), 152 (25) and 117 (40).
5-Bromo-8-methoxy-1-(3-pyridyl)-1,2,3,4-tetrahydroisoquino-lin-3-one 9. M.p. 242-248 ${ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, $53.85 ; \mathrm{H}$, 4.1; $\mathrm{N}, 8.3 . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$ requires C, $54.1 ; \mathrm{H}, 3.9 ; \mathrm{N}, 8.4 \%$); $\delta_{\mathrm{H}}\left[80 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.6(2 \mathrm{H}, \mathrm{m}, 2 \times 4-\mathrm{H}), 3.8(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 5.8(1 \mathrm{H}, \mathrm{br}$ d, $1-\mathrm{H}), 7.0(1 \mathrm{H}, \mathrm{d}, J 8,7-\mathrm{H}), 7.4(1 \mathrm{H}, \mathrm{ddd}$, $J 1,5$ and 8 , py $5-\mathrm{H}), 7.65(2 \mathrm{H}, \mathrm{d}, J 8,6-\mathrm{H}$ and m, py $4-\mathrm{H}), 8.5$ (2 H, m, py $2-\mathrm{H}$ and $6-\mathrm{H})$ and $8.75\left(1 \mathrm{H}\right.$, br d, NH) (Found: M^{+}, 334.0131. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$ requires 334.0140); m/z $334\left(\mathrm{M}^{+}\right.$, 26%), 332 (39) and 252 (100).
8-Methoxy-1-(3-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-one 10. A solution of the isoquinoline $9(2.5 \mathrm{~g}, 7.5 \mathrm{mmol})$ in glacial acetic acid ($80 \mathrm{~cm}^{3}$) containing 10% palladium-on-carbon (0.2 g) and sodium acetate ($2.5 \mathrm{~g}, 30 \mathrm{mmol}, 4$ equiv.) was hydrogenated at $70^{\circ} \mathrm{C}$ and at atmospheric pressure for 8 h . The cooled solution was evaporated to dryness, partitioned between chloroform and $0.9 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium carbonate, dried, and evaporated to give the title compound $10(1.5 \mathrm{~g}, 79 \%)$, m.p. $195-197^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 71.0; H, 5.2; N, 11.0. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 70.85 ; \mathrm{H}, 5.55 ; \mathrm{N}, 11.0 \%\right) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 3.58\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 21,4-\mathrm{CH}\right), 3.71\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 21,4-\mathrm{CH}\right)$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.95(1 \mathrm{H}, \mathrm{d}, J 5,1-\mathrm{CH}), 6.77$ and $6.82(2 \mathrm{H}$, $2 \times \mathrm{d}, J 8$ and $7,5-\mathrm{H}$ and $7-\mathrm{H}), 7.15-7.33(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}, 6-\mathrm{H}$ and py $5-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{m}$, py $4-\mathrm{H}), 8.48(1 \mathrm{H}, \mathrm{dd}, J 1$ and 5 , py $6-\mathrm{H})$ and $8.59\left(1 \mathrm{H}, \mathrm{d}, J 1\right.$, py 2-H) (Found: $\mathrm{M}^{+}, 254.1046$. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 254.1056); $m / z 254\left(\mathrm{M}^{+}, 18 \%\right)$ and 176 (100).

1-(3-Pyridyl)-1,2,3,4-tetrahydrobenzo[f]isoquinolin-3-one 11. M.p. 209-210 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 78.6; H, 5.4; N, 10.3. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires C, $78.8 ; \mathrm{H}, 5.1 ; \mathrm{N}, 10.2 \%$); $\delta_{\mathrm{H}}[80 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 4.05(2 \mathrm{H}, \mathrm{brd}, 2 \times 4-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 7.3-$ $8.15(8 \mathrm{H}, \mathrm{br} \mathrm{m}, 6 \mathrm{ArH}$, py $5-\mathrm{H}$ and py $4-\mathrm{H}), 8.5(1 \mathrm{H}, \mathrm{dd}, J 1$ and 5 , py $6-\mathrm{H}), 8.7(1 \mathrm{H}, \mathrm{dd}, J 1$ and 3 , py $2-\mathrm{H})$ and $8.75(1 \mathrm{H}$, br s, NH) (Found: $\mathrm{M}^{+}, 274.1103 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires 274.1106); $m / z 274\left(\mathrm{M}^{+}, 90 \%\right), 196$ (100) and 168 (44).

General Procedure for the Reaction of the Lactams 3-8 and 10-12 with Dimethylcarbamoyl Chloride.-A mixture of the
appropriate lactam and dimethylcarbamoyl chloride $\left(1.5 \mathrm{~cm}^{3}\right.$ mmol^{-1} of lactam) was heated in an oil-bath under the conditions described in the text. The cooled solution was evaporated to dryness and the residue partitioned between equal volumes of hydrochloric acid, ethyl acetate and chloroform. The organic layer was separated, extracted with water and the combined aqueous extracts were washed with ethyl acetate. The combined organic layer and extracts were dried and evaporated to give, after chromatography (etherethyl acetate or chloroform) compounds 22, 23 or 24 . The aqueous layers were made basic with saturated aqueous sodium hydrogen carbonate and were extracted with ethyl acetate. The combined extracts were dried, filtered, evaporated and chromatographed (ether-ethyl acetate or chloroform) to give compounds 28-34. The aqueous layer which remained was brought to pH 14 with $1.25 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium hydroxide, and the oil so formed was extracted with ethyl acetate and the extract dried and evaporated. The residue was dissolved in diethyl ether and treated with ethereal hydrogen chloride to precipitate the salt which, upon trituration followed by crystallisation, gave the desired amidine 13-20.
From 1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-3one 3 the following were formed. 1-(4-Chlorophenyl)-3-dimethylamino-1,4-dihydroisoquinoline hydrochloride 13. M.p. $141-144^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $60.1 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.4$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 60.2 ; \mathrm{H}, 5.9 ; \mathrm{N}, 8.3 \%$); $\nu_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3200-3400 \mathrm{br}, 2250$ and $1615 ; \delta_{\mathrm{H}}(80 \mathrm{MHz})$ $3.3\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.65\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 18\right.$, $4-\mathrm{H}), 4.15\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 18,4-\mathrm{H}\right), 6.25(1 \mathrm{H}$, br s, $1-\mathrm{H}) 7.0-7.5(8 \mathrm{H}$, br m, 8 ArH) and $12.0\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}^{+}\right)$(Found: $\mathrm{M}^{+}, 284.1081$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2}$ requires 284.1080); $m / z 284\left(\mathrm{M}^{+}, 50 \%\right), 256$ (10) and 173 (100).
1-(4-Chlorophenyl)-N,N-dimethyl-3-oxo-1,2,3,4-tetrahydro-isoquinoline-2-carboxamide 22. M.p. $114-115^{\circ} \mathrm{C}$ [from EtOAclight petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, $65.7 ; \mathrm{H}, 5.0 ; \mathrm{N}, 8.4$. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires C, $\left.65.75 ; \mathrm{H}, 5.2 ; \mathrm{N}, 8.5 \%\right) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 2.72\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{3}\right), 2.98\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{NCH}_{3}\right), 3.7(2 \mathrm{H}$, br m, $2 \times 4-\mathrm{H}), 6.0-6.4(1 \mathrm{H}, \mathrm{brm}, 1-\mathrm{H})$ and $6.9-7.4(8 \mathrm{H}$, br m, 8 ArH) (Found: $\mathrm{M}^{+}, 330.0959 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $330.0948) ; m / z 328\left(\mathrm{M}^{+}, 25 \%\right)$ and $256(100)$.
From 1-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-3one 4 the following were formed. 3-Dimethylamino-1-(2-fluorophenyl)-1,4-dihydroisoquinoline hydrochloride 14. M.p. $268-270{ }^{\circ} \mathrm{C}$ (from $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{EtOH}-\mathrm{EtOAc}$) (Found: C , $67.15 ; \mathrm{H}, 5.9 ; \mathrm{N}, 9.2 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FN}_{2} \cdot \mathrm{HCl}$ requires $\mathrm{C}, 67.0 ; \mathrm{H}, 5.95$; $\mathrm{N}, 9.2 \%) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.55(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 4.04\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 20,4-\mathrm{H}\right), 4.12\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 20,4-\mathrm{H}\right)$, $6.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 6.92-7.61(8 \mathrm{H}, \mathrm{br} \mathrm{m}, 8 \mathrm{ArH})$ and $11.65(1$ H , br s, NH^{+}) (Found: M^{+}, 268.1367. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FN}_{2}$ requires 268.1376); m/z $268\left(\mathrm{M}^{+}, 100 \%\right)$, 197 (22) and 173 (100).

1-(2-Fluorophenyl)-N,N-dimethyl-3-oxo-1,2,3,4-tetrahydro-isoquinoline-2-carboxamide 23. M.p. 153-155 ${ }^{\circ} \mathrm{C}$ [from EtOAclight petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 69.2; H, 5.7; N, 8.8. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}$ requires C, 69.2; $\left.\mathrm{H}, 5.4 ; \mathrm{N}, 9.0 \%\right) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 2.75\left(3 \mathrm{H}\right.$, brs, $\left.\mathrm{NCH}_{3}\right)$, $2.93\left(3 \mathrm{H}, \mathrm{brs}, \mathrm{NCH}_{3}\right), 3.71(1 \mathrm{H}$, $\left.\mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 3.93\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 6.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, 1-H), 6.95-7.40 ($8 \mathrm{H}, \mathrm{m}, 8 \mathrm{ArH}$) (Found: $\mathbf{M}^{+}, 312.1275$. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}$ requires 312.1274); $m / z 312\left(\mathrm{M}^{+}, 26 \%\right), 240(77)$ and 72 (100).

From 6 -fluoro-1-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquin-olin-3-one 5 the following were formed. 3-Dimethylamino-6-fluoro-1-(2-fluorophenyl)-1,4-dihydroisoquinoline hydrochloride 15. M.p. $280-285^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$) (Found: $\mathrm{C}, 63.0$; $\mathrm{H}, 5.4 ; \mathrm{N}, 8.8 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \cdot \mathrm{HCl}$ requires $\mathrm{C}, 63.3 ; \mathrm{H}, 5.3 ; \mathrm{N}$, $8.7 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3100-2500 \mathrm{br}$ and $1650 ; \delta_{\mathrm{H}}(80 \mathrm{MHz})$ $\left[\mathrm{CDCl}_{3} /\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.3\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.3$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times 4-\mathrm{H}), 6.3(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 6.9-7.6(7 \mathrm{H}, \mathrm{br} \mathrm{m}$, $7 \mathrm{ArH})$ and $10.65\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}^{+}\right)$(Found: $\mathrm{M}^{+}, 286.1272$.
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2}$ requires 286.1282); $m / z 286\left(\mathrm{M}^{+}, 65 \%\right)$ and 191 (100).

6-Fluoro-1-(2-fluorophenyl)-N,N-dimethyl-3-oxo-1,2,3,4-tetrahydroisoquinoline-2-carboxamide 24. M.p. $\quad 116-118^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane) (Found: $\mathrm{C}, 65.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 8.5$. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 65.45 ; \mathrm{H}, 4.9 ; \mathrm{N}, 8.5 \%$); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 1685 \mathrm{br} ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.95(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.68\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 3.92\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 6.45$ ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$) and 6.85-7.4 (7 H , br m, 7 ArH) (Found: M^{+}, 330.1173. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 330.1180); m/z $330\left(\mathrm{M}^{+}\right.$, 8%), 258 (95) and 72 (100).

From 6-fluoro-1-(3-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-one 6 the following were formed. 3-Dimethylamino-6-fluoro-1-(3-pyridyl)-1,4-dihydroisoquinoline dihydrochloride 16. M.p. $212-220^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: $\mathrm{C}, 53.4 ; \mathrm{H}, 5.5 ; \mathrm{N}, 11.5$. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{3} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 53.3 ; \mathrm{H}, 5.6 ; \mathrm{N}, 11.7 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3480,3350,2350-2700 \mathrm{br}, 2050$ and 1655 ; $\delta_{\mathrm{H}}\left[270 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.34(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 4.22\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 4.40\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 6.35$ (1 H, br s, 1-H), 7.15-7.55 ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{ArH}$), $7.88(1 \mathrm{H}, \mathrm{m}$, py $5-\mathrm{H}), 8.37(1 \mathrm{H}, \mathrm{m}$, py $4-\mathrm{H}), 8.78(1 \mathrm{H}, \mathrm{d}, J 4$, py $6-\mathrm{H}), 9.0(1$ H, s, py $2-\mathrm{H})$ and $10.70\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}^{+}\right) ; m / z 269\left(\mathrm{M}^{+}, 60 \%\right)$ and 191 (100).

6-Fluoro-1-(3-pyridyl)isoquinoline 31. M.p. 192-195 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 74.75; H, 4.2; N, 12.4. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FN}_{2}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 4.05 ; \mathrm{N}, 12.5 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ no absorption between $1625-1700 ; \delta_{\mathbf{H}}(270 \mathrm{MHz}) 7.35(1 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}), 7.52(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and py $5-\mathrm{H}), 7.66(1 \mathrm{H}, \mathrm{d}, J 7,5-\mathrm{H}), 8.05$ ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and py $4-\mathrm{H}), 8.64(1 \mathrm{H}, \mathrm{d}, J 5,3-\mathrm{H}), 8.76(1 \mathrm{H}, \mathrm{dd}$, $J 1$ and 5 , py $6-\mathrm{H}), 8.95\left(1 \mathrm{H}, \mathrm{d}, J 1\right.$, py $2-\mathrm{H}$) (Found: M^{+}, 224.0746. $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FN}_{2}$ requires 224.0750); $m / z 224\left(\mathrm{M}^{+}, 45 \%\right)$ and 223 (100).

From 5-chloro-1-(3-pyridyl)-1,2,3,4-tetrahydroisoquinolin3 -one 7 the following were formed. 5-Chloro-3-dimethylamino-1-(3-pyridyl)-1,4-dihydroisoquinoline dihydrochloride 17. M.p. $245-252^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, 52.2; $\mathrm{H}, 4.95 ; \mathrm{N}, 11.3$. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 52.3 ; \mathrm{H}, 5.2 ; \mathrm{N}, 11.4 \%$); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 3400 \mathrm{br}, 2350 \mathrm{br}, 2100,1995$ and 1650 ; $\delta_{\mathrm{H}}\left[80 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.35(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 4.25(2 \mathrm{H}, \mathrm{brs}, 2 \times 4-\mathrm{H}), 6.40(1 \mathrm{H}$, br s, $1-\mathrm{H}), 7.30-7.90$ ($4 \mathrm{H}, \mathrm{m}$, py $5-\mathrm{H}$ and 3 ArH), $8.30(1 \mathrm{H}, \mathrm{d}, J 9$, py $4-\mathrm{H}), 8.75(1 \mathrm{H}$, d, $J 5$, py $6-\mathrm{H}), 9.00(1 \mathrm{H}$, br s, py $2-\mathrm{H})$ and $10.65(1 \mathrm{H}$, br s, NH^{+}) (Found: $\mathrm{M}^{+}, 285.1017 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3}$ requires 285.1033); $m / z 285\left(\mathrm{M}^{+}, 70 \%\right)$ and 207 (100).

5-Chloro-1-(3-pyridyl)isoquinoline 32. M.p. $141-143{ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 70.0 ; \mathrm{H}, 3.6 ; \mathrm{N}, 11.9 \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{2}$ requires $\mathrm{C}, 69.9 ; \mathrm{H}, 3.8 ; \mathrm{H}, 11.6 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ no absorption $1610-1700 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.52(2 \mathrm{H}, \mathrm{m}$, py $5-\mathrm{H}$ and $7-\mathrm{H}) 7.82,7.97$ and $8.05(3 \mathrm{H}, 2 \times \mathrm{d}, J 6$ and 7 and $\mathrm{m}, 6-\mathrm{H}, 8-\mathrm{H}$ and py $4-\mathrm{H}), 8.13(1 \mathrm{H}, \mathrm{d}, J 5,4-\mathrm{H}), 8.76(2 \mathrm{H}, \mathrm{m}$, py $6-\mathrm{H}$ and $3-\mathrm{H}), 8.94(1 \mathrm{H}$, br s, py $2-\mathrm{H}) ; m / z 239\left(\mathrm{M}^{+}, 95 \%\right)$ and $205(100)$.

From 1-(3-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-one 8 the following were formed. 3-Dimethylamino-1-(3-pyridyl)-1,4dihydroisoquinoline dihydrochloride 18. M.p. $210-218^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 56.1 ; \mathrm{H}, 6.0 ; \mathrm{N}, 12.5 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \cdot$ $2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 56.15 ; \mathrm{H}, 6.2 ; \mathrm{N}, 12.3 \%$; $\delta_{\mathrm{H}}[80 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right], 3.3\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{NCH}_{3}\right)$, $3.4\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{NCH}_{3}\right), 4.30$ ($2 \mathrm{H}, \mathrm{brs}, 2 \times 4-\mathrm{H}), 6.4(1 \mathrm{H}$, brd, $1-\mathrm{H}), 7.25(4 \mathrm{H}, \mathrm{br} \mathrm{m}, 4 \mathrm{ArH})$, $7.9(1 \mathrm{H}$, dd, $J 5$ and 7 , py $5-\mathrm{H}), 8.4(1 \mathrm{H}, \mathrm{m}$, py $4-\mathrm{H}), 8.8(1 \mathrm{H}, \mathrm{dd}$, $J 1$ and 5 , py $6-\mathrm{H}), 9.0(1 \mathrm{H}, \mathrm{d}, J 1$, py $2-\mathrm{H})$ and $10.7(1 \mathrm{H}$, br m, NH^{+}, exchanges with $\mathrm{D}_{2} \mathrm{O}$) (Found: $\mathrm{M}^{+}, 251.1436 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3}$ requires 251.1422); $m / z 251\left(\mathrm{M}^{+}, 76 \%\right), 173$ (100) and 145 (38).

1-(3-Pyridyl)isoquinoline dihydrochloride 33. A foam (Found: $\mathrm{C}, 59.95 ; \mathrm{H}, 4.35 ; \mathrm{N}, 10.0 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$ requires $\mathrm{C}, 60.2 ; \mathrm{H}$, $4.3 ; \mathrm{N}, 10.0 \%) ; \delta_{\mathrm{H}}\left[80 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right], 7.4-8.45(8 \mathrm{H}, \mathrm{br} \mathrm{m}$, 6 ArH and 2 py H), $8.65(1 \mathrm{H}, \mathrm{dd}, J 1$ and 5 , py $6-\mathrm{H}), 8.8(1 \mathrm{H}$, d, J 1, py 2-H) (Found: M^{+}, 206.0837. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2}$ requires 206.0844); $m / z 206\left(\mathrm{M}^{+}, 49 \%\right)$ and 205 (100).

From 8-methoxy-1-(3-pyridyl)-1,2,3,4-tetrahydroisoquinol-in-3-one 10 the following were formed. 3-Dimethylamino-8-methoxy-1-(3-pyridyl)-1,4-dihydroisoquinoline dihydrochloride 19. $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.75$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19,4-\mathrm{H}\right), 4.44\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}} 19\right.$, $4-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{d}, J 2,1-\mathrm{H}), 6.85$ and $6.97(1 \mathrm{H}, \mathrm{d}, J 8$, and $1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{H}$ and $7-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{t}, J 8,6-\mathrm{H}), 7.91$ $(1 \mathrm{H}$, br m , py $5-\mathrm{H}), 8.58$ and $9.21(2 \mathrm{H}$, br m, and 1 H , br m , py $2-\mathrm{H}$, py $4-\mathrm{H}$ and py $6-\mathrm{H})$ and $11.88\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}^{+}\right)$ (Found: $\mathrm{M}^{+}, 281.1518 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$ requires 281.1528); m/z $281\left(\mathrm{M}^{+}, 49 \%\right)$ and 203 (100).

8-Methoxy-N,N-dimethyl-3-oxo-1-(3-pyridyl)-1,2,3,4-tetra-hydroisoquinoline-2-carboxamide 28. M.p. $178-179^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 66.3; $\mathrm{H}, 5.9$; N, 12.8. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $66.45 ; \mathrm{H}, 5.9 ; \mathrm{N}, 12.9 \%$; $\delta_{\mathrm{H}}\left[270 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$, spectrum acquired at $110^{\circ} \mathrm{C}$ due to considerable broadening at lower temperatures] $2.73\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{d}, J 19$, $4-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90(1 \mathrm{H}, \mathrm{d}, J 19,4-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H}), 6.89$ and $6.94(2 \mathrm{H}, 2 \times \mathrm{d}, J 8$ and $8,5-\mathrm{H}$ and $7-\mathrm{H}), 7.30$ $(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and py $5-\mathrm{H}), 7.60(1 \mathrm{H}$, br d, $J 8$, py $4-\mathrm{H})$ and 8.44 ($2 \mathrm{H}, \mathrm{m}$, py $2-\mathrm{H}$ and py $6-\mathrm{H}$) (Found: M^{+}, 325.1412. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires 325.1426); m/z $325\left(\mathrm{M}^{+}, 27 \%\right)$, 253 (54) and 72 (100).

8-Methoxy-1-(3-pyridyl)isoquinoline dihydrochloride 34. M.p. $205-210^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 58.5 ; \mathrm{H}, 4.6 ; \mathrm{N}, 9.1$. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O} \cdot 2 \mathrm{HCl}$ requires $\mathrm{C}, 58.3 ; \mathrm{H}, 4.6 ; \mathrm{N}, 9.1 \%$); $\delta_{\mathrm{H}}[400$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.21(1 \mathrm{H}, \mathrm{d}, J 9,7-\mathrm{H})$, $7.73(1 \mathrm{H}, \mathrm{d}, J 9,5-\mathrm{H}), 7.88(1 \mathrm{H}, 2 \times \mathrm{d}, J 9$ and $9,6-\mathrm{H}), 8.10$ $(2 \mathrm{H}, \mathrm{d}, J 5$ and $\mathrm{m}, 4-\mathrm{H}$ and py $5-\mathrm{H}), 8.63(2 \mathrm{H}, \mathrm{d}, J 5$ and m , $3-\mathrm{H}$ and py $4-\mathrm{H}), 9.01(1 \mathrm{H}$, dd, $J 5$ and 1, py $6-\mathrm{H})$ and $9.10(1 \mathrm{H}$, d, $J 1$, py $2-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 236.0957 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires 236.0950); $m / z 236\left(\mathrm{M}^{+}, 22 \%\right.$), 221 (100) and 205 (27).

From 1-(3-pyridyl)-1,2,3,4-tetrahydrobenzo[f]isoquinolin-3-one 11 the following were formed. 3-Dimethylamino-1-(3-pyridyl)-1,4-dihydrobenzo[f]isoquinoline dihydrochloride 20. A foam (Found: C, $61.0 ; \mathrm{H}, 5.7 ; \mathrm{N}, 10.6 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 61.2 ; \mathrm{H}, 5.9 ; \mathrm{N}, 10.7 \%) ; \delta_{\mathrm{H}}\left[80 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $3.3\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.7(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times 4-\mathrm{H})$, $6.5(1 \mathrm{H}$ br s, $1-\mathrm{H})$ and $7.65-9.15(10 \mathrm{H}$, br m, 6 ArH and $4 \mathrm{pyH})\left(\right.$ Found: $\mathrm{M}^{+}, 301.1575 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3}$ requires 301.1579); $m / z 301\left(\mathrm{M}^{+}, 75 \%\right)$ and 223 (100).

N,N-Dimethyl-3-oxo-1-(3-pyridyl)-1,2,3,4-tetrahydrobenzo-[f]isoquinoline-2-carboxamide 29. M.p. 223- $224^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{C}, 73.3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 12.2 . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $73.0 ; \mathrm{H}, 5.5 ; \mathrm{N}, 12.2 \%) ; \delta_{\mathrm{H}}(80 \mathrm{MHz}), 2.7\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{3}\right)$, $2.95\left(3 \mathrm{H}\right.$, br s, $\left.\mathrm{NCH}_{3}\right), 4.2(2 \mathrm{H}$, br s, $2 \times 4-\mathrm{H}), 6.45(1 \mathrm{H}$, br s, $1-\mathrm{H}), 7.0-8.05(8 \mathrm{H}, \mathrm{br} \mathrm{m}, 6 \mathrm{ArH}$, py $5-\mathrm{H}$ and py $4-\mathrm{H}), 8.5-8.65$ $(2 \mathrm{H}$, br m , py $2-\mathrm{H}$ and py $6-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 345.1485$. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 345.1477); $m / z 345\left(\mathrm{M}^{+}, 51 \%\right)$, 273 (84) and 72 (100).

From 1-(4-pyridyl)-1,2,3,4-tetrahydroisoquinolin-3-one 12 the following were formed. N, N-Dimethyl-3-oxo-1-(4-pyridyl)-1,2,3,4-tetrahydroisoquinoline-2-carboxamide 30. M.p. 197$200^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{EtOAc}$) (Found: $\mathrm{C}, 58.3$; $\mathrm{H}, 5.5 ; \mathrm{N}, 11.75$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 58.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 12.0 \%$); $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.38$ (1 H , br s, $4-\mathrm{H}$), $3.73(1 \mathrm{H}, \mathrm{d}, J 19,4-\mathrm{H}), 6.29$ (1 H, br s, $1-\mathrm{H})$, $7.20-7.75(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}), 7.90(2 \mathrm{H}, \mathrm{d}, J 6$, py $3-\mathrm{H}$ and py $5-\mathrm{H})$ and $8.68(2 \mathrm{H}, \mathrm{d}, J 6$, py $2-\mathrm{H}$ and py $6-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 295.1335 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 295.1320); m / z $295\left(\mathrm{M}^{+}, 27 \%\right), 223(28)$ and $72(100)$.

3-(N,N-Dimethylcarbamoyloxy)-1-(4-pyridyl)isoquinoline hydrochloride 37. M.p. $157-160^{\circ} \mathrm{C}$ [from EtOAc-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 69.6; H, 5.1; N, 14.6. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 69.6 ; \mathrm{H}, 5.15 ; \mathrm{N}, 14.3 \%$) $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 3.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 7.53(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}), 7.52$ and $7.71(2 \mathrm{H}, 2 \times \mathrm{dt}, J 8$ and $1,6-\mathrm{H}$ and $7-\mathrm{H}), 7.6$ $(2 \mathrm{H}, 2 \times \mathrm{d}, J 6$ and 6 , py $3-\mathrm{H}$ and py $5-\mathrm{H}), 7.90$ and $8.02(2 \mathrm{H}$,
$2 \times \mathrm{d}, J 8$ and $8,5-\mathrm{H}$ and $8-\mathrm{H}), 8.8(2 \mathrm{H}, 2 \times \mathrm{d}, J 6$ and $6, \mathrm{py}$ $2-\mathrm{H}$ and py $6-\mathrm{H})$; $m / z 293\left(\mathrm{M}^{+}, 95 \%\right.$), 220 (17) and 72 (100).

Acknowledgements

We thank Professor R. A. Raphael for helpful discussions and the Analytical Sciences Department of SmithKline Beecham for the spectral and analytical data.

References

1 J. Bermudez, I. Hughes, E. H. Karran, F. R. Mangan, R. E. Markwell, S. A. Smith, M. J. Thomson and P. A. Wyman, Biomed. Chem. Lett., 1993, 3, 2571.
2 M. Seefelder, (BASF) GP 1078 568/1960
3 V. P. Arya and S. J. Shenoy, Indian J. Chem., Sect. B, 1976, 14, 763.

4 E. Haug and W. Kantlehner, Synthesis, 1983, 35.

5 Z. Csuros, G. Deak, I. Hoffman and A. Torok-Kalmer, Acta Chim. (Budapest), 1969, 60, 177.
6 G. Deak, M. Doda, L. Gyorgy, L. Hazai and L. Sterk, J. Med. Chem., 1977, 20, 1384.
7 E. Zara-Kaczian, G. Deak, L. Hazai, K. Gall-Istok and J. HaskoBreuer, Acta Chim. Acad. Sci. Hung., 1979, 100, 37.
8 B. C. Challis and J. A. Challis, in Comprehensive Organic Chemistry, eds. D. H. R. Barton and W. D. Ollis, Pergamon Press, Oxford, 1979, vol. 2, ch. 9.9 .
9 L. Hazai, G. Deak, G. Szabo and E. Koltai, Acta Chim. Acad. Sci. Hung., 1979, 102, 305.
10 E. F. V. Scriven, in Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 2, ch. 2.
11 V. St. Georgiev, R. G. Van Inwegen and P. Carlson, Eur. J. Med. Chem., 1990, 25, 375.

Paper 4/02394C
Received 22nd April 1994 Accepted 6th June 1994

